Object Oriented Programming in CPP

Programming in C++

Introduction to C++

e (C++ programming language developed by AT&T Bell Laboratories in 1979 by Bjarne
Stroustrup. C++ is fully based on Object Oriented Technology i.e. C++ is ultimate
paradigm for the modeling of information.

e C++is the successor of C language.

e Itis a case sensitive language.

Character Set- Set of characters which are recognized by c++compiler i.e
Digits (0-9), Alphabets (A-Z & a-z) and special characters +-*,.“‘“<>={(]) space etci.e 256
ASCII characters.

Tokens- Smallest individual unit. Following are the tokens

e Keyword- Reserve word having special meaning the language and can’t be used as
identifier.
e Identifiers-Names given to any variable, function, class, union etc. Naming
convention (rule) for writing identifier is as under:
i. First letter of identifier is always alphabet.
ii. Reserve word cannot be taken as identifier name.
iii. No special character in the name of identifier except under score sign _’.
e Literals-Value of specific data type assign to a variable or constant. Four type of
Literals:
i. Integer Literal i.e int x =10
ii. Floating point Literal i.e float x=123.45
iii. Character Literal i.e char x= ‘a’, enclosed in single quotes and single character
only.
iv. String Literal i.e cout<< “Welcome” , anything enclosed in double quotes
e Operator - performs some action on data
Arithmetic(+,-,*,/,%)

Assignment operator (=)

Get More Learning Materials Here : & m &) www.studentbro.in

admin
Text Box
Object Oriented Programming in CPP

Increment / Decrement (++, --)
Relational/comparison (<,>,<=,>===1=).
Logical(AND(&&),OR(| |),NOT(!).

Conditional (? :)

Precedence of Operators:

++(post increment),--(post decrement)

++(pre increment),--(pre decrement),sizeof !(not),-(unary),+unary plus)

*(multiply), / (divide), %(modulus)

+(add),-(subtract)

<(less than),<=(less than or equal),>(greater than), >=(greater than or equal to)

==(equal),!=(not equal)

&& (logical AND)

| | dogical OR)

?:(conditional expression)

=(simple assignment) and other assignment operators(arithmetic assignment operator)

, Comma operator

e Punctuation - used as separatorsinc++e.g. [{()}],;#=:etc

Data type- A specifier to create memory block of some specific size and type. C++offers two

types of data types:

1. Fundamental type : Which are not composed any other data type i.e. int, char, float and
void
2. Derived data type : Which are made up of fundamental data type i.e array, function,

class, union etc

Data type conversion- Conversion of one data type into another data type. Two type of

conversion i.e

1. Implicit Conversion - It is automatically taken care by complier in the case of lower range

Get More Learning Materials Here : m @& www.studentbro.in

to higher range e.g. int X, char ¢="A’ then x=c is valid i.e character value in c is
automatically converted to integer.

ii. Explicit Conversion- It is user-defined that forces an expression to be of specific type. e.g.
double x1,x2 and int res then res=int(x1+x2)

Variable- Memory block of certain size where value can be stored and changed during

program execution. e.g. int x, float y, float amount, char c;

Constant- Memory block where value can be stored once but can’t changed later on during

program execution. e.g. const int pi =3.14;

cout - It is an object of ostream_with assign class defined in iostream.h header file and used

to display value on monitor.

cin - It is an object of istream_with assign class defined in iostream.h header file and used to

read value from keyboard for specific variable.

comment- Used for better understanding of program statements and escaped by the

compiler to compile . e.g. — single line (/) and multi- line(/*....*/)

Cascading- Repeatedly use of input or output operators(“>>” or “<<”) in one statement with

cin or cout.

Control Structure:

Sequence . Multiple Switch Statement
conditional . .
control Choice (Alternate for if | loop control statement
__| statement] .)
statement(if (if else) Statement else- if) works for | (while ,do... while, for)
if else
) If —else-if only exact match
Syntax Syntax Syntax Syntax Syntax

switch(int / char

variable)

while(expression)
{ {
case literall: statements;
[statements }

break;]

Entry control loop

Get More Learning Materials Here : & @ &) www.studentbro.in

if(expressio
n)
{

statements;

}

If(expressio
n)
{

statements;

}

else

{

statements;

}

If
(expression)

{

statements

}

else
if(expression)
{

statement

}

else

{

statement

}

case literal2:
[statements,
break;]
default:statements;
}
Break is

compulsory

statement with
every case because
if it is not included
then the controls
executes next case
statement until
next

break encountered
or end of swtich
reached.

Default is optional,
it gets executed
when no match is

found

works for true
condition.

do

{
statements;

} while(expression);
Exit Control Loop
execute at least once if
the condition is false at
beginning.

for loop
for(expressionl;expressio
n2;expression3)

{
statement;}

Entry control loop
works for true
condition

and preferred for fixed

no.of times.

Note: any non-zero value of an expression is treated as true and exactly 0 (i.e. all bits

contain 0) is treated as false.

Nested loop- loop within loop.

exit()- defined in process.h and used to terminate the program depending upon certain

condition.

break- exit from the current loop depending upon certain condition.

continue- to skip the remaining statements of the current loop and passes control to the next

loop control statement.

Get More Learning Materials Here : &

@E} www.studentbro.in

goto- control is unconditionally transferred to the location of local label specified by

<identifier>.

For example
Al:
cout<<”test”;

goto Al,;

Some Standard C++ libraries

Header Nome Purpose

iostream.h Defines stream classes for input/output streams
stdio.h Standard input and output

ctype.h Character tests

string.h String operations

math.h Mathematical functions such as sin() and cos()
stdlib.h Utility functions such as malloc() and rand()

Some functions

e isalpha(c)-check whether the argument is alphabetic or not.

e islower(c)- check whether the argument is lowecase or not.

e isupper(c) - check whether the argument is upercase or not.

e isdigit(c)- check whether the argument is digit or not.

e isalnum(c)- check whether the argument is alphanumeric or not.

e tolower()-converts argument in lowercase if its argument is a letter.

e toupper(c)- converts argument in uppercase if its argument is a letter.

e strcat()- concatenates two string.

e strcmp-compare two string.

e pow(x,y)-return X raised to powery.

e sqrt(x)-return square root of x.

¢ random(num)-return a random number between 0 and (num-1)

e randomize- initializes the random number generator with a random value.

Get More Learning Materials Here : m @& www.studentbro.in

Array- Collection of element of same type that are referred by a common name.
One Dimensional array

e An array is a continuous memory location holding similar type of data in single row
or single column. Declaration in c++ is as under:
const int size =20;
int a[size] or int a[20]. The elements of array accessed with the help of an index.
For example : for(i=0;i<20;i++) cout<<al[il;

e String (Array of characters)- Defined in c++ as one dimensional array of characters
as char s[80]= “Object oriented programming”;

Two-dimensional array

e A two diamensional array is a continuous memory location holding similar type of
data arranged in row and column format (like a matrix structure).
Declaration - int a[3][4], means ‘@’ is an array of integers are arranged in 3 rows & 4

columns.

Function- Name given to group of statements that does some specific task and may return a

value. Function can be invoked(called) any no. of time and anywhere in the program.

Function prototypes- Function declaration that specifies the function name, return type and
parameter list of the function.

syntax: return_type function_name(type varl,type var2,....,type varn);

Actual Parameters

Variables associated with function name during function call statement.

Formal Parameters

Variables which contains copy of actual parameters inside the function definition.

Local variables

e Declared inside the function only and its scope and lifetime is function only and hence
accessible only inside function.

Global variables

Get More Learning Materials Here : & @ &) www.studentbro.in

e Declared outside the function and its scope and lifetime is whole program and hence
accessible to all function in the program from point declaration.
Example:
#include <iostream.h>
int a=20; // global
void main()
{
int b=10; // local
cout<<a<<b;

}
Passing value to function-

e Passing by value-In this method separate memory created for formal arguments and
if any changes done on formal variables, it will not affect the actual variables. So
actual variables are preserved in this case

e Passing by address/reference-In this method no separate memory created for formal
variables i.e formal variables share the same location of actual variables and hence

any change on formal variables automatically reflected back to actual variables.
Example :

void sample(int a, int &Db)

{

a=a+100;

b=b+200;

cout<<a<<b;

}

void main()

{

int a=50, b=40;

cout<<a<<b; // output 50 40
sample(a,b) // output 150 240
cout<<a<<b; // output 50 240

}

Get More Learning Materials Here : & m &) www.studentbro.in

Function overloading

e Processing of two or more functions having same name but different list of

parameters
Function recursion
e Function that call itself either directly or indirectly.

Structure-Collection of logically related different data types (Primitive and Derived)

referenced under one name.

e.g. struct employee
{

int empno;

char name[30];

char design[20];

char department[20];
}

Declaration: employee e;

Input /Output : cin>>e.empno; // members are accessed using dot(.) operator.

cout<<e.empno;
Nested structure

e A Structure definition within another structure.

e A structure containing object of another structure.

e.g. struct address
{int houseno;
char city[20];
char area[20];
long int pincode;}
struct employee

{

int empno;

Get More Learning Materials Here : & m &) www.studentbro.in

char name|[30];

char design[20];

char department[20];

address ad; // nested structure

}

Declaration: employee e€;

Input /Output : cin>>e.ad.houseno; / members are accessed using dot(.) operator.

cout<<e.ad.houseno;

typedef
Used to define new data type name.
e.g. typedef char Str80[80]; Str80 str;

#define Directives
e Use to define a constant number or macro or to replace an instruction.
Function overloading in C++

e A function name having several definitions that are differentiable by the number or

types of their arguments is known as function overloading.
Example : A same function print() is being used to print different data types:

#include <iostream.h>

class printData

{

public:

void print(int i) {

cout << "Printing int: " << 1 << endl;
}

void print(double) {

cout << "Printing float: " << f << endl];
}

void print(char* c) {

cout << "Printing character: " << ¢ << end];

Get More Learning Materials Here : & m &) www.studentbro.in

}

5

int main(void)

{

printData pd;

// Call print to print integer
pd.print(5);

/[Call print to print float
pd.print(500.263);

/[Call print to print character
pd.print("Hello C++");

return 0;

}

When the above code is compiled and executed, it produces following result:
Printing int: 5

Printing float: 500.263

Printing character: Hello C++

Get More Learning Materials Here : & m &) www.studentbro.in

Object Oriented Programming Concepts

Object Oriented Programming follows bottom up approach in program design and

emphasizes on safety and security of data.
FEATURES OF OBJECT ORIENTED PROGRAMMING:
Inheritance:

e Inheritance is the process of forming a new class from an existing class or base class.
The base class is also known as parent class or super class.
e Derived class is also known as a child class or sub class. Inheritance helps in

reusability of code , thus reducing the overall size of the program
Data Abstraction:

e It refers to the act of representing essential features without including the
background details .Example : For driving, only accelerator, clutch and brake

controls need to be learnt rather than working of engine and other details.
Data Encapsulation:

e It means wrapping up data and associated functions into one single unit called class..
e A class groups its members into three sections :public, private and protected, where
private and protected members remain hidden from outside world and thereby helps

in implementing data hiding.
Modularity :

e The act of partitioning a complex program into simpler fragments called modules is
called as modularity.
e Itreduces the complexity to some degree and

e It creates a number of well defined boundaries within the program.

Polymorphism:

Get More Learning Materials Here : & m &) www.studentbro.in

e Poly means many and morphs mean form, so polymorphism means one name
multiple forms.

e It is the ability for a message or data to be processed in more than one form.

e (C++implements Polymorhism through Function Overloading, Operator overloading

and Virtual functions.

SHAPE
areaf)
*,,-" 1 \I
RECTANGLE() TRIANGLE() CIRCLE()
area(rectangle) Area(triangle) Arealcircle)

Objects and Classes:
The major components of Object Oriented Programming are . Classes & Objects

A Class is a group of similar objects . Objects share two characteristics: They all have state
and behavior. For example : Dogs have state (name, color, breed, hungry) and behavior
(barking, fetching, wagging tail). Bicycles also have state (current gear, current pedal
cadence, current speed) and behavior (changing gear, applying brakes). Identifying the state
and behavior for real world objects is a great way to begin thinking in terms of object-
oriented programming. These real-world observations all translate into the world of object-

oriented programming.

Software objects are conceptually similar to real-world objects: they too consist of state and
related behavior. An object stores its state in fields (variables in some programming

languages) and exposes its behavior through functions
Classes in Programming :

e Itis a collection of variables, often of different types and its associated functions.
e C(lass just binds data and its associated functions under one unit there by enforcing
encapsulation.

e C(lasses define types of data structures and the functions that operate on those data

Get More Learning Materials Here : & @ &) www.studentbro.in

structures.

e A class defines a blueprint for a data type.
Declaration/Definition :

A class definition starts with the keyword class followed by the class name; and the class
body, enclosed by a pair of curly braces. A class definition must be followed either by a

semicolon or a list of declarations.

class class_name

{
access_specifier_1:
memberl;
access_specifier_2:

member2;

} object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names
for objects of this class. The body of the declaration can contain members that can either be

data or function declarations, and optionally access specifiers.
[Note: the default access specifier is private.

Example : class Box { int a;

public:

double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

h

Access specifiers in Classes:

Access specifiers are used to identify access rights for the data and member functions of the

class. There are three main types of access specifiers in C++ programming language:

e private

Get More Learning Materials Here : & m &) www.studentbro.in

e public

e protected

Member-Access Control

Type of Access Meaning
Privat Class members declared as private can be used only by member
rivate
functions and friends (classes or functions) of the class.
Class members declared as protected can be used by member
Protected functions and friends (classes or functions) of the class. Additionally,
they can be used by classes derived from the class.
Public Class members declared as public can be used by any function.

e Importance of Access Specifiers

Access control helps prevent you from using objects in ways they were not intended to be

used. Thus it helps in implementing data hiding and data abstraction.

OBJECTS in C++:

Objects represent instances of a class. Objects are basic run time entities in an object

oriented system.

Creating object / defining the object of a class:

The general syntax of defining the object of a class is:-
Class_name object_name;

In C++, a class variable is known as an object. The declaration of an object is similar to that of
a variable of any data type. The members of a class are accessed or referenced using object

of a class.

Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box

Get More Learning Materials Here : & m &) www.studentbro.in

Both of the objects Box1 and Box2 will have their own copy of data members.
Accessing / calling members of a class All member of a class are private by default.

Private member can be accessed only by the function of the class itself.Public member of a
class can be accessed through any object of the class. They are accessed or called using object
of that class with the help of dot operator (.).

The general syntax for accessing data member of a class is:-
Object_name.Data_member=value;

The general syntax for accessing member function of a class is:-

Object_name. Function_name (actual arguments);

The dot ('. ') used above is called the dot operator or class member access operator. The
dot operator is used to connect the object and the member function. The private data of a

class can be accessed only through the member function of that class.

Class methods definitions (Defining the member functions)

Member functions can be defined in two places:-
e Qutside the class definition

The member functions of a class can be defined outside the class definitions. It is only
declared inside the class but defined outside the class. The general form of member function

definition outside the class definition is:

Return_type Class_name:: function_name (argument list)

{

Function body

}

Where symbol :: is a scope resolution operator.

The scope resolution operator (::) specifies the class to which the member being
declared belongs, granting exactly the same scope properties as if this function

definition was directly included within the class definition

class sum

{

Get More Learning Materials Here : & @ &) www.studentbro.in

int A, B, Total;

public:

void getdata ();

void display ();

I

void sum:: getdata () / Function definition outside class definition Use of :: operator
{

cout<<” \n enter the value of A and B”;

cin>>A>>B;

}

void sum:: display () // Function definition outside class definition Use of :: operator

{

Total =A+B;
cout<<”\n the sum of A and B="<<Total;
}

e Inside the class definition
The member function of a class can be declared and defined inside the class definition.

class sum

{

int A, B, Total;

public:

void getdata ()

{

cout< ”\n enter the value of A and B”;
cin>>A>>B;

}

void display ()

{

total = A+B;

cout<<”\n the sum of A and B="<<total;
}

5

Get More Learning Materials Here : & @ &) www.studentbro.in

Differences between struct and classes in C++

In C++, a structure is a class defined with the struct keyword.Its members and base classes
are public by default. A class defined with the class keyword has private members and base

classes by default. This is the only difference between structs and classes in C++.

INLINE FUNCTIONS

e Inline functions definition starts with keyword inline

e The compiler replaces the function call statement with the function code
itself(expansion) and then compiles the entire code.

e They run little faster than normal functions as function calling overheads are saved.

e A function can be declared inline by placing the keyword inline before it.

Example
inline void Square (int a)
{ cout<<a*a;}

void main()

e
{- In place of function
call , function body is
Square(4); . | cout <<4*4;} substituted hecause
= Square () is inline
Square(8) —— ! cout <<RB*E; } Tunction
} -

Pass Object As An Argument

[*C++ PROGRAM TO PASS OBJECT AS AN ARGUMENT. The program Adds the two heights

given in feet and inches. */

#include< iostream.h>
#include< conio.h>
class height

{

int feet,inches;

Get More Learning Materials Here : & @ &) www.studentbro.in

public:

void getht(int f,int i)

{

feet=f;

inches=i;

}

void putheight()

{

cout< < "\nHeight is:"< < feet< < "feet\t"< < inches< < "inches"< < endl;
}

void sum(height a,height b)
{

height n;

n.feet = a.feet + b.feet;
n.inches = a.inches + b.inches;
if(n.inches ==12)

{

n.feet++;

n.inches = n.inches -12;

}

cout< < endl< < "Height is "< < n.feet< < " feet and "< < n.inches< < end];
35

void main()

{height h,d,a;

clrscrQ;

h.getht(6,5);

a.getht(2,7);

h.putheight();
a.putheight();

d.sum(h,a);

getch();

}

Get More Learning Materials Here : & @ &) www.studentbro.in

Height is: 6 feet 5 inches
Height is: 2 feet 7 inches
Height is 9 feetand 0

CONSTRUCTORS AND DESTRUCTORS

CONSTRUCTORS :

A member function with the same as its class is called Constructor and it is used to initialize

the object of that class with a legal initial value.

Example:

class Student

{

int rollno;

float marks;

public:

student() /Constructor
{

rollno=0;

marks=0.0;

}

//other public members

|5
TYPES OF CONSTRUCTORS:

1. Default Constructor:
A constructor that accepts no parameter is called the Default Constructor. If you don't
declare a constructor or a destructor, the compiler makes one for you. The default
constructor and destructor take no arguments and do nothing.

2. Parameterized Constructors:
A constructor that accepts parameters for its invocation is known as parameterized

Constructors, also called as Regular Constructors.

DESTRUCTORS:

Get More Learning Materials Here : & m &) www.studentbro.in

e A destructor is also a member function whose name is the same as the class name but
is preceded by tilde(“~”).It is automatically by the compiler when an object is
destroyed. Destructors are usually used to deallocate memory and do other cleanup
for a class object and its class members when the object is destroyed.

e A destructor is called for a class object when that object passes out of scope or is

explicitly deleted.
Example :

class TEST

{int Regno,Max,Min,Score;

Public:

TEST() // Default Constructor

{}

TEST (int Pregno,int Pscore) // Parameterized Constructor
{

Regno = Pregno ;Max=100;Max=100;Min=40;Score=Pscore;
}

~ TEST () // Destructor

{ Cout<<”TEST Over”<<endl;}

¥
The following points apply to constructors and destructors:

e Constructors and destructors do not have return type, not even void nor can they
return values.

e References and pointers cannot be used on constructors and destructors because their
addresses cannot be taken.

e Constructors cannot be declared with the keyword virtual.

e Constructors and destructors cannot be declared static, const, or volatile.

e Unions cannot contain class objects that have constructors or destructors.

e The compiler automatically calls constructors when defining class objects and calls
destructors when class objects go out of scope.

e Derived classes do not inherit constructors or destructors from their base classes, but

they do call the constructor and destructor of base classes.

Get More Learning Materials Here : & m &) www.studentbro.in

e The default destructor calls the destructors of the base class and members of the
derived class.

e The destructors of base classes and members are called in the reverse order of the
completion of their constructor:

e The destructor for a class object is called before destructors for members and bases

are called.

Copy Constructor

e A copy constructor is a special constructor in the C++ programming language used to
create a new object as a copy of an existing object.

e A copy constructor is a constructor of the form classname(classname &).The compiler
will use the copy constructors whenever you initialize an instance using values of
another instance of the same type.

e Copying of objects is achieved by the use of a copy constructor and a assignment

operator.
Example :

class Sample{ int i, j;}

public:

Sample(int a, int b) // constructor
{i=a;j=b;}

Sample (Sample & s) /copy constructor

{j=s.j;1=s.j;
Cout <<”\n Copy constructor working \n”;
}

void print (void)

{cout <<i<< j<<"\n”;}

|5

Note: The argument to a copy constructor is passed by reference, the reason being that when
an argument is passed by value, a copy of it is constructed. But the copy constructor is

creating a copy of the object for itself, thus ,it calls itself. Again the called copy constructor

Get More Learning Materials Here : & m &) www.studentbro.in

requires another copy so again it is called.in fact it calls itself again and again until the
compiler runs out of the memory .so, in the copy constructor, the argument must be passed

by reference.
The following cases may result in a call to a copy constructor:
e When an object is passed by value to a function:

The pass by value method requires a copy of the passed argument to be created for the
function to operate upon. Thus to create the copy of the passed object, copy constructor is
invoked

If a function with the following prototype :

void cpyfunc(Sample); // Sample is a class

then for the following function call

cpyfunc(objl); // obj1 is an object of Sample type

the copy constructor would be invoked to create a copy of the obj1 object for use by

cpyfunc().
e When a function returns an object :
When an object is returned by a function the copy constructor is invoked

Sample cpyfunc(); / Sample is a class and it is return type of cpyfunc()

If func cpyfunc() is called by the following statement

0bj2 = cpyfunc();

Then the copy constructor would be invoked to create a copy of the value returned by
cpyfunc() and its value would be assigned to obj2. The copy constructor creates a temporary

object to hold the return value of a function returning an object.
INHERITANCE

e Inheritance is the process by which new classes called derived classes are created
from existing classes called base classes.

e The derived classes have all the features of the base class and the programmer can
choose to add new features specific to the newly created derived class.

e The idea of inheritance implements the is a relationship. For example, mammal IS-A

animal, dog IS-A mammal hence dog IS-A animal as well and so on.

Get More Learning Materials Here : & @ &) www.studentbro.in

Features or Advantages of Inheritance:

e Reusability of Code

e Saves Time and Effort

e Faster development, easier maintenance and easy to extend

e Capable of expressing the inheritance relationship and its transitive nature which

ensures closeness with real world problems.

Base & Derived Classes:
A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. A class derivation list names one or more base classes

and has the form:

class derived-class: access-specifier base-class

Where access is one of public, protected, or private.

For example, if the base class is MyClass and the derived class is sample it is specified as:
class sample: public MyClass

The above makes sample have access to both public and protected variables of base class
MyClass.

EXAMPLE OF SINGLE INHERITANCE
Consider a base class Shape and its derived class Rectangle as follows:

// Base class

class Shape

{

public:

void setWidth(int w)
{

width = w;

}

void setHeight(int h)
{

height = h;

}

Get More Learning Materials Here : & m &) www.studentbro.in

protected:

int width;

int height;

5

/| Derived class

class Rectangle: public Shape
{

public:

int getArea()

{

return (width * height);

}

¥

int main(void)

{

Rectangle Rect;
Rect.setWidth(5);
Rect.setHeight(7);

// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;
return 0;

}

When the above code is compiled and executed, it produces following result:

Total area: 35

Access Control and Inheritance:

A derived class can access all the non-private members of its base class. Thus base-class
members that should not be accessible to the member functions of derived classes should be
declared private in the base class. We can summarize the different access types according to

who can access them in the following way:

Access public protected private

Get More Learning Materials Here : & @ &) www.studentbro.in

Same class yes yes yes
Derived classes yes yes no
Outside classes yes no no

A derived class inherits all base class methods with the following exceptions:

e (Constructors, destructors and copy constructors of the base class.

e Overloaded operators of the base class.

e The friend functions of the base class.

When deriving a class from a base class, the base class may be inherited through public,

protected or private inheritance. We hardly use protected or private inheritance but public

inheritance is commonly used. While using different type of inheritance, following rules are

applied:

1. Public Inheritance: When deriving a class from a public base class, public members of

the base class become public members of the derived class and protected members of the

base class become protected members of the derived class. A base class's private

members are never accessible directly from a derived class, but can be accessed through

calls to the public and protected members of the base class.

2. Protected Inheritance: When deriving from a protected base class, public and protected

members of the base class become protected members of the derived class.

3. Private Inheritance: When deriving from a private base class, public and protected

members of the base class become private members of the derived Class.

1. Single class Inheritance:

TYPES OF INHERITANCE

e Single inheritance is the one where you have a single base class and a single derived

class.

Get More Learning Materials Here : &

@E} www.studentbro.in

Class A . a Base class { super)

T

Clazz B it is a sub class (derived)

2. Multilevel Inheritance:

e In Multi level inheritance, a subclass inherits from a class that itself inherits from

another class.

Class A
it 15 a Base class (super) of B
C‘la;-'.s B it is a sub class (derived) of A

and base class of class C

T

Class C derived class{sub) of class B

3. Multiple Inheritance:

e In Multiple inheritances, a derived class inherits from multiple base classes. It has

properties of both the base classes.

Class A Class B Base class

N

Class C Derived class

4. Hierarchical Inheritance:

e In hierarchial Inheritance, it's like an inverted tree. So multiple classes inherit from a

single base class.

Get More Learning Materials Here : m @& www.studentbro.in

S § Class A ‘—‘ Base Class

Class B Class C

Sub Class(derived)

Class D

5. Hybrid Inheritance:

e It combines two or more forms of inheritance .In this type of inheritance, we can have
mixture of number of inheritances but this can generate an error of using same name
function from no of classes, which will bother the compiler to how to use the
functions.

e Therefore, it will generate errors in the program. This has known as ambiguity or
duplicity.

e Ambiguity problem can be solved by using virtual base classes

Class A |

Class E’\ } Class C

Class D

Get More Learning Materials Here : m @& www.studentbro.in

Pointers

e DPointer is a variable that holds a memory address of another variable of same type.
e It supports dynamic allocation routines.

e It can improve the efficiency of certain routines.
C++ Memory Map :

e Program Code : It holds the compiled code of the program.

e Global Variables : They remain in the memory as long as program continues.

e Stack: It is used for holding return addresses at function calls, arguments passed to
the functions, local variables for functions. It also stores the current state of the CPU.

e Heap:Itis aregion of free memory from which chunks of memory are allocated via
DMA functions.

Static Memory Allocation : The amount of memory to be allocated is known in advance and
it allocated during compilation, it is referred to as Static Memory Allocation.

e.g. int a; // This will allocate 2 bytes for a during compilation.

Dynamic Memory Allocation : The amount of memory to be allocated is not known
beforehand rather it is required to allocated as and when required during runtime, it is
referred to as dynamic memory allocation.

C++ offers two operator for DMA — new and delete.

e.g int X =new int; float y= new float; // dynamic allocation

delete x; delete y; //dynamic deallocation

Free Store : It is a pool of unallocated heap memory given to a program that is used by the

program for dynamic memory allocation during execution.

Declaration and Initialization of Pointers :
Datatype *variable_name;

Syntax : Datatype *variable_name;

Int *p; float *p1; char *c;

Eg. Int *p; float *p1; char *c;

Get More Learning Materials Here : & m &) www.studentbro.in

Two special unary operator * and & are used with pointers. The & is a unary operator that

returns the memory address of its operand.
Eg. Int a = 10; int *p; p = &a;

Pointer arithmetic:

Two arithmetic operations, addition and subtraction, may be performed on pointers. When
you add 1 to a pointer, you are actually adding the size of whatever the pointer is pointing at.
That is, each time a pointer is incremented by 1, it points to the memory location of the next
element of its base type.

e.g. int *p; P++;

If current address of p is 1000, then p++ statement will increase p to 1002, not 1001.

If *c is char pointer and *p is integer pointer then

Char pointer C c+1 c+2 c+3 c+4 c+5 c+6 c+7
Address 100 101 102 103 104 105 106 107
Int Pointer P P+1 P+2 P+3

Adding 1 to a pointer actually adds the size of pointer’s base type.

Base address : A pointer holds the address of the very first byte of the memory location
where it is pointing to. The address of the first byte is known as BASE ADDRESS.

Dynamic Allocation Operators :

C++ dynamic allocation allocate memory from the free store/heap/pool, the pool of
unallocated heap memory provided to the program. C++ defines two unary operators new

and delete that perform the task of allocating and freeing memory during runtime.

Creating Dynamic Array :

Syntax : pointer-variable = new data-type [size];

e.g. int * array = new int[10];

Not array[0] will refer to the first element of array, array[1] will refer to the second element.
No initializes can be specified for arrays.

All array sizes must be supplied when new is used for array creation.

Get More Learning Materials Here : & @ &) www.studentbro.in

Two dimensional array :

int *arr, 1, c;

r=5;c=5;

arr = new int [r * c];

Now to read the element of array, you can use the following loops :
For (inti=0;i<r;i++)

{

cout << “\n Enter element in row “<<i+ 1 <<“: <

For (int j=0;j < c; j++)

cin>>arr [i*c+jl;

}

Memory released with delete as below:

Syntax for simple variable : For array :
delete pointer-variable; delete [size] pointer variable;
eg. delete p; Eg. delete [] arr;

Pointers and Arrays :

C++ treats the name of an array as constant pointer which contains base address i.e address
of first location of array. Therefore Pointer variables are efficiently used with arrays for
declaration as well as accessing elements of arrays, because array is continuous block of

same memory locations and therefore pointer arithmetic help to traverse in the array easily.

void main()

{

int *m;

int marks[10] ={ 50,60,70,80,90,80,80,85,75,95};

m = marks; // address of first location of array or we can write it as m=&marks[0]
for(int i=0;i<10;i++)

cout<< *m++;

/] or

m = marks; // address of first location of array or we can write it as m=&marks[0]

Get More Learning Materials Here : & @ &) www.studentbro.in

for(int i=0;i<10;i++)
cout<< *(m+i);

}
Array of Pointers :

To declare an array holding 10 int pointers —
int * ip[10];

That would be allocated for 10 pointers that can point to integers.

Now each of the pointers, the elements of pointer array, may be initialized. To assign the
address of an integer variable phy to the forth element of the pointer array, we have to write
ip[3] = & phy;

Now with *ip[3], we can find the value of phy. int *ip[5];

Index 0 1 2 3 4

address 1000 1002 1004 1006 1008

inta=12,b=23,c=34,d=45,e =56;

Variable a b C d e
Value 12 23 34 45 56
address 1050 1065 2001 2450 2725

ip[0] = &a; ip[1] = &b; ip[2] = &c; ip[3] = &d; ip[4] = &e;

Index ip[0] ip[1] ip[2] ip[3] ip[4]
Array ip

1050 1065 2001 2450 2725
value
address 1000 1002 1004 1006 1008

ip is now a pointer pointing to its first element of ip. Thus ip is

Get More Learning Materials Here : i

@ www.studentbro.in

equal to address of ip[0], i.e. 1000
*ip (the value of ip[0]) = 1050

* (* ip) = the value of *ip = 12

** (ip+3) = * * (1006) = * (2450) = 45

Pointers and Strings :

Pointer is very useful to handle the character array also. E.g :

void main()

{ char str[] = “computer”;

char *cp;

cp=str;

cout<<str ; //display string

cout<<cp; // display string

for (cp =str; *cp = \0’; cp++) // display character by character by character
cout << ”--“<<*cp;

/[arithmetic

str++; // not allowed because str is an array and array name is constant pointer
cp++; // allowed because pointer is a variable

cout<<cp;}

Output:

Computer

Computer
--C--0--m--p--u--t--e—r

computer

An array of char pointers is very useful for storing strings in memory. Char
*subject[] = { “Chemistry”, “Physics”, “Maths”, “CS”, “English” };

In the above given declaration subject[] is an array of char pointers whose element pointers
contain base addresses of respective names. That is, the element pointer subject[0] stores the
base address of string “Chemistry”, the element pointer subject[1] stores the above address of

string “Physics” and so forth.

An array of pointers makes more efficient use of available memory by consuming lesser

Get More Learning Materials Here : & m &) www.studentbro.in

number of bytes to store the string.

An array of pointers makes the manipulation of the strings much easier. One can easily
exchange the positions of strings in the array using pointers without actually touching their

memory locations.
Pointers and CONST :

A constant pointer means that the pointer in consideration will always point to the same

address. Its address can not be modified.

A pointer to a constant refers to a pointer which is pointing to a symbolic constant. Look the

following example :

int m = 20; // integer m declaration

int *p = &m; // pointer p to an integer m

++ (*p); // ok : increments int pointer p

int * const ¢ = &n; // a const pointer c to an intger n

++ (* ¢); // ok : increments int pointer c i.e. its contents

++ C; // wrong : pointer c is const — address can’t be modified
const int cn = 10; // a const integer cn

const int *pc = &cn; // a pointer to a const int

++ (* pc); // wrong : int * pc is const — contents can’t be modified
++ pc; // ok : increments pointer pc

const int * const cc = *k; // a const pointer to a const integer
++ (* cc); // wrong : int *cc is const

++ cc; // wrong : pointer cc is const
Pointers and Functions :
A function may be invoked in one of two ways :

1. call by value

2. call by reference
The second method call by reference can be used in two ways :

1. by passing the references

Get More Learning Materials Here : & m &) www.studentbro.in

2. by passing the pointers

Reference is an alias name for a variable. For ex : int m = 23;

int &n = m;

int *p;

p = &m;

Then the value of m i.e. 23 is printed in the following ways : cout <<
m; // using variable name

cout << n; // using reference name

cout << *p; // using the pointer
Invoking Function by Passing the References :

When parameters are passed to the functions by reference, then the formal parameters

become references (or aliases) to the actual parameters to the calling function.

That means the called function does not create its own copy of original values, rather, it

refers to the original values by different names i.e. their references.
For example the program of swapping two variables with reference method :

#include<iostream.h>

void main()

{

void swap(int &, int &);

inta=5,b=6;

cout << “\n Value of a :” << a<<“and b :” << b;
swap(a, b);

cout << “\n After swapping value of a :” << a << “and b :” << b;
}

Void swap(int &m, int &n)

{

int temp; temp = m;

m = n;

n = temp;

}

Get More Learning Materials Here : & m &) www.studentbro.in

output :
Valueofa:5andb:6
After swapping valueofa:6andb:5

Invoking Function by Passing the Pointers:

When the pointers are passed to the function, the addresses of actual arguments in the
calling function are copied into formal arguments of the called function.

That means using the formal arguments (the addresses of original values) in the called
function, we can make changing the actual arguments of the calling function.

For example the program of swapping two variables with Pointers :

#include<iostream.h>

void main()

{

void swap(int *m, int *n);

inta=5,b=6;

cout << “\n Value ofa:”<<a<<“andb:” << b;
swap(&a, &b);

cout << “\n After swapping value of a :” << a << “and b :” << b;
}

void swap(int *m, int *n)

{

int temp;

temp = *m;

*m = *n;

*n = temp;

}

Input :

Valueofa:5andb: 6

After swapping valueofa:6andb:5

Function returning Pointers :

The way a function can returns an int, an float, it also returns a pointer. The general form of

prototype of a function returning a pointer would be

Get More Learning Materials Here : & m &) www.studentbro.in

Type * function-name (argument list);
#include <iostream.h> int

*min(int &, int &); void main()

{

int a, b, *c;

cout << “\nEnter a :”; cin >> a;

cout << “\nEnter b :”; cint >> b;

¢ = min(a, b);

cout << “An The minimum no is :” << *¢;
}

int*min(int &%, int &y)

{

if(x<y)

return (&x);

else

return (&y)

}

Dynamic structures :

The new operator can be used to create dynamic structures also i.e. the structures for which
the memory is dynamically allocated.

struct-pointer = new struct-type;

student *stu;

stu = new Student;

A dynamic structure can be released using the deallocation operator delete as shown below:

delete stu;
Objects as Function arguments:

Objects are passed to functions in the same way as any other type of variable is passed.
When it is said that objects are passed through the call-by-value, it means that the called

function creates a copy of the passed object.

A called function receiving an object as a parameter creates the copy of the object without

Get More Learning Materials Here : & m &) www.studentbro.in

invoking the constructor. However, when the function terminates, it destroys this copy of the

object by invoking its destructor function.

If you want the called function to work with the original object so that there is no need to
create and destroy the copy of it, you may pass the reference of the object. Then the called

function refers to the original object using its reference or alias.

Also the object pointers are declared by placing in front of a object pointer’s name.

Classname * object-pointer;
Eg. Student *stu;

The member of a class is accessed by the arrow operator (->) in object pointer method.

Eg:

#include<iostream.h>

class Point

{

intx,y;

public :

Point()

{x=y=0}

void getPoint(int x1, int y1)
{x=xLy=yL}

void putPoint()

{

cout << “\n Point : (“ << X <<) “ <<y << “)”;
35

void main()

{

Point p1, *p2;

cout << “\n Set point at 3, 5 with object”;
pl.getPoint(3,5);

cout << “\n The point is :”;

pl.putPoint();

Get More Learning Materials Here : & m &) www.studentbro.in

p2 = &pl;

cout << “\n Print point using object pointer :”;

p2->putPoint();

cout << “\n Set point at 6,7 with object pointer”;
p2->getPoint(6,7);

cout<< “\n The point is :”;

p2->putPoint();

cout << “\n Print point using object :”;

pl.getPoint();}

If you make an object pointer point to the first object in an array of objects, incrementing the
pointer would make it point to the next object in sequence.
student stud[5], *sp;

sp = stud; // sp points to the first element (stud[0])of stud

sp++; // sp points to the second element (stud[1]) of stud sp + = 2;
// sp points to the fourth element (stud[3]) of stud sp--; // sp
points to the third element (stud[2]) of stud

You can even make a pointer point to a data member of an object. Two points should be

considered :

1. A Pointer can point to only public members of a class.

2. The data type of the pointer must be the same as that of the data member it points to.

This Pointer :

In class, the member functions are created and placed in the memory space only once. That
is only one copy of functions is used by all objects of the class.

Therefore if only one instance of a member function exists, how does it come to know which

object’s data member is to be manipulated?

Member Functionl Member Function? Member Pty *T
Object 1 Object 2 Object 3
Data Memberl Data Memberl Data Memberl
Data Member 2 Data Member 2 Data Member 2

Get More Learning Materials Here : & @ &) www.studentbro.in

For the above figure, if Member Function2 is capable of changing the value of Data Member3
and we want to change the value of Data Member3 of Object3. How would the Member
Function2 come to know which Object’s Data Member3 is to be changed?

To overcome this problem this pointer is used.

When a member function is called, it is automatically passed an implicit argument that is a
pointer to the object that invoked the function. This pointer is called This.

That is if ojbect3 is invoking member function2, then an implicit argument is passed to
member function2 that points to object3 i.e. this pointer now points to object3.

The friend functions are not members of a class and, therefore, are not passed a this pointer.

The static member functions do not have a this pointer.

Get More Learning Materials Here : & m &) www.studentbro.in

	1. CPP-Programming in C++.pdf (p.1-10)
	2. CPP-Object Oriented Programming Concepts.pdf (p.11-27)
	3. CPP-Pointers.pdf (p.28-39)

